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Abstract-In the present paper certain numerical aspects of the theory of fractals in structures are
presented. The fractal geometry is approximated through the I.F.S. (iterated function system)
approach or through the F.I. (fractal interpolation). These approximations of the fractal are
combined with the methods used in structural analysis in order to calculate stress and strain fields
in fractal structures. All types of structures with convex strain energy are studied.

1. INTRODUCTION

The geometry of fractals arises when one wants to describe accurately the geometry of
nature. This geometry is central to the various fields of science such as in chemistry, physics,
biology and economy. In structural analysis and in applied mechanics, we very often
have fractal geometries (Mandelbrot, 1972; Falconer, 1985; Barnsley, 1988; Feder, 1988;
Peitgen and Saupe, 1988; Prusinkiewicz and Hanan, 1989; Scholz and Mandelbrot, 1989;
Takayasu, 1990; L. Mehaute, 1990; Fleischmann, 1990; Muller and Reinhardt, 1990;
Bressloffand Stark, 1991; Bunde and Havlin, 1991; Crilly et al., 1991). We could mention
here the crack interfaces in natural bodies (Takayasu, 1990; Scholz and Mandelbrot, 1989),
the free surfaces and the interfaces of fractured bones, metals and rocks, the geometry of
metallic surfaces after sandblasting (L. Mehaute, 1990) or after a meteoritic rain, the
crushed interfaces in composite and granular materials (Bunde and Havlin, 1991), the
geometry of diffusion fronts (Feder, 1988), for example, between a metallic and a ceramic
material, of percolation patterns, of phase transition regions and of sponged materials
(Crilly et al., 1991), and finally the geometry of fluvial systems, arterial systems, nervous
cells (Muller and Reinhardt, 1990) and plants (Prusinkiewicz and Hanan, 1989).

In the paper we present here, it is assumed that all the fractals considered are obtained
by an appropriately defined iterated function system (LF.S.) or that they are the result of
fractal interpolation (F.L) of a given set of data. Thus, in both cases the fractal results as
the fixed point ofa given set offunctions. The fixed point approximation, which is equivalent
to the approximation of the fractal by classical curves or surfaces (i.e. curves and surfaces
of integer Hausdorff dimensions), is combined with the numerical techniques of structural
analysis. This combination gives as a result the proposed method for the calculation fractal
structures. The assumption we make here is that both a structure n and its boundary r
may have a fractal geometry. The theory of the fractal geometry in structures and solids
have been developed by Panagiotopoulos (l992a, b) where we refer the reader for the more
theoretical aspects.

In the present paper we deal with fractal bilateral and unilateral structures. As bilateral
(resp. unilateral) structures are called those structures for which the principle of virtual or
ofcomplementary virtual work holds in equality form (resp. inequality form). This equality
form results in the case where classical boundary conditions and constraints hold, whereas
the inequality form results from inequality constraints, for example from monotone possibly
multivalued (i.e. with complete vertical branches) material laws and boundary conditions,
which result from convex generally nonsmooth and nonfinite strain energy functions every­
where. The bilateral problems give rise to the variational equalities which, after discretiza­
tion, lead to the linear or nonlinear equations of the classical structural analysis; the
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unilateral problems considered here lead to variational inequalities or, after discretization,
to convex programming problems with or without inequality constraints. For a complete
study of the theory of unilateral problems leading to variational inequalities we refer to
Panagiotopoulos (1985). The present paper does not deal with structural analysis problems
with nonconvex energy functions leading to hemivariational inequalities (i.e. with non­
monotone, possibly multivalued, stress-strain laws and/or boundary conditions) (Moreau
and Panagiotopoulos, 1989; Moreau et al., 1988). Such types ofproblems (e.g. in composites
and in reinforced materials) are connected with fractal stress-strain laws and will be the
subject of a future paper. The method presented here consists of the approximation of the
fractal boundary, domain or interface through classical boundaries, domains or interfaces
and of the solution of each one of the resulting classical problems by a classical structural
analysis method. This procedure is repeated several times and at the limit the solution of
the fractal problem is obtained. Some simple mathematical proofs concerning this con­
vergence are given and then some numerical examples are explained. The first example
concerns a fractal tree-like completely irregular network which represents a Golgi cell of
the human brain. In the second example, a dynamic problem of a spongy body idealized
through the Sierpinski triangle is studied. In the third example, a multifractured plane
elastic structure (e.g. a fractured bone) is studied on the assumptions that unilateral contact
and Coulomb fraction conditions appear at the interface. Finally, the fourth example deals
with the large displacement and large strain problem ofa punch, with fractal geometry (e.g.
a fractured metal piece or a metal piece after sandblasting) in unilateral geometric nonlinear
contact with a rigid support (i.e. contact with the possibility of debonding).

As has been remarked in Panagiotopoulos (l992b), the F.L method can also be
applied for the approximation of complicated curves or surfaces having integer Hausdorff
dimensions. Thus, the methods presented here have a broader validity. Still there are many
open questions on this subject even for facts which, in the case of integer dimension, would
be considered as obvious. Certain elementary relations from the theory of norms are used
for the proof of the propositions. The reader who is not familiar with general norms should
understand everything in the sense of classical Euclidean Rn-norm. In the present paper,
following Panagiotopoulos (l992b) we only use the deterministic LF.S. which seems to be
sufficient for our purposes. The fractal surfaces and interfaces in the numerical examples
can also be generated by using random LF.S. (see e.g. Barnsley, 1988; Bressloff and Stark,
1991). This way offractal generation leads to a slight modification of the computer codes
used; for the needs of solids mechanics, i.e. calculations with fractal geometries etc., the
consideration of deterministic fractals seems to be sufficient, at least for the present.

2. THE CONVERGENCE OF THE DISCRETIZATION PROCEDURE FOR FRACTAL STRUCTURES:
BILATERAL PROBLEMS

Let 0 be a body and let f be its boundary. It is assumed here that both 0 and fare
fractals and the corresponding structure is denoted by {O, f}. According to
Panagiotopoulos (1992b), there exist sequences {fj } and {OJ} of classical geometric
elements such that f j ~ f and OJ ~ 0 as j --- 00 in the sense of Hausdorff metric. For the
structure subjected to an incremental procedure (e.g. in the case oflarge displacements) let
us denote by .¥j the stress increment raj}, and/or the displacement field increment {uj } of
the structure {OJ' f j }. Then X = lim .<1j as j -+ 00 is defined to be the solution of the initial
problem {O, f} in the increment under consideration. Let us assume that within each
increment, Xi is for every j the solution of the equation

(I)

where ft(G) is the loading increment of the structure and W(Gj ) denotes the linearized or
tangential operator of the nonlinear problem. As in Panagiotopoulos (1992b), we may
assume that W(Gj ) acts on a Hilbert space V and takes values in th: same H~bert space V
for all j. We may assume, for instance, that V is a space defined on 0, where 0 contains all
the OjS and their limit 0, and the same happens for the boundary r of 11 with respect to
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the rjs and the r. Then the operators W(Gj ) and the unknown quantities .xj are appro­
priately extended on the sets n-a. Note that n may coincide with a. but in this case we
have to define the space Von a fractal set following the heavy mathematical methods of
Panagiotopoulos (1985). Another possibility would be to define each operator W(Gj ) simply
on the Hilbert space JI.i defined on OJ and then to assume that the quantities (norms, linear
functionals, operators) defined on JI.i tend in some sense to the respective quantities defined
on a. This method is applied both in the case of a fractal boundary and in the case of a
fractal domain, e.g. a Sierpinski gasket. Here all the mathematical technicalities are avoided
and it is simply assumed that the whole procedure takes place in the same function space
for all subproblems considered. This is well justified from the standpoint of mechanics by
modifying the domains OJ appropriately through parts of zero modulus of elasticity.

The next proposition concerns the approximation of the fractal structure problem by
a finite dimensional discretization scheme, Le. the finite element (F.E.) method. Let us
denote by the upper index h, which is destined to tend to infinity, the corresponding
discretized problem which results from the initial one by considering, for example, an
appropriate F.E. scheme. We denote by Vh the finite dimensional subspace of V in which
the solution ofthediscretized problem Gt (with respect to Gh

) corresponding to Gj = {OJ, r j}
(with respect to G = {a, r}) has to be sought. Additional general propositions will be
proved. They are appropriately formulated for the theoretically oriented engineer, thus
avoiding unnecessary mathematical complications. However, if one wants to make the
proofs perfect from the mathematical point of view, he has to adapt them to the functional
framework introduced by Jonson and Wallin (1984). We denote here by II. II and (.,.) the
norm and the inner product, respectively, on V.

Proposition 2.1
Suppose that W(Gj ): V -+ V is a linear, bounded and symmetric operator on the

Hilbert space V. Moreover, let p(Gj ) E V for every j. We assume that:

(i) For every j

(2)

where Cj is a positive constant depending on {Gj } such that for every j:

IX < cj , IX = constant> O.

(ii) p(G) -+ p(G) strongly in V as j -+ OJ.

(iii) W(Gj)X* -+ W(G)X* strongly in V as j -+ OJ.

(3)

(4)

(5)

~ the discretized problem corresponding to eqn (1) and suppose that (i) and (iii) hold for
Wh in vh, (ii) holds for ph, and that

Then

and

xt -+ X as h -+ OJ and j -+ OJ

(6)

(7)

(8)

where X is the solution of the problem W(G)X = peG) and X h the solution of its cor­
responding finite element version.
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Proof We referto the proof of proposition I (Section 5) ofPanagiotopoulos (1992b).
As in that proof, we here obtain, from eqn (2) -;- eqn (4), that

and

Indeed we have that

X} ~ X strongly in V

XJ ~ Xh strongly in Vh
•

(9)

(10)

(ll)

where the last inequality results from the boundedness ofp(Gj ). Accordingly lIX!1! < c and
thus X} --+ X weakly in V. We shall prove that X is the unique solution of the problem

W(G)X = p(G).

Because of the symmetry of W(Gj ) we can write for every X* E V

(12)

Then eqn (13) with eqn (3) imply that X is a solution of eqn (12). This solution is unique
because W(G) satisfies an inequality analogous to egn (2) on V, as can be easily obtained
from egns (2) and (4). To show it we assume the contrary, i.e. that XI and X2 are solutions
of eqn (12) and using the aforementioned inequality, we obtain that /I Xl - X 2r :::; 0, Le.
that Xl = Xl' From further argument, as in ego (5.8) of Panagiotopoulos (1992b) , we
obtain the strong convergence of eqn (9). This proof repeated for W\ X;, ph and V; implies
the relationship in eqn (10). Now, one may write that

II + IIX}-Xn· (14)

The right hand side (Lh.s.) tends to zero due to eqns (6) and (9) and thus eqn (7) is shown
to be true. Furthermore, we have that

(15)

The r.h.s. tends to zero asj -+ 00 due to eqns (10) and (7). Thus eqn (8) is proved.
The previous proposition expressed in the language of mechanics takes the following

form.

Proposition 2.2
Within each increment the solution of the discretized problem GJ tends to the solution

of the fractal problem G, as h ~ 00 and j ~ 00. Moreover, the solution of the discretized
problem Gh tends to the solution of the fractal problem G, as h --+ 00.

Let us consider now a large displacement, andlor a large strain problem, or a dynamic
problem. It is well-known that the solution of these problems denoted here by Xis obtained
by formulating the corresponding incremental problem. Then the solution ofthe incremental
problem X within each increment yields at the limit (e.g. the subdivision of the time interval
tends to zero) and in a norm appropriate for the problem under consideration, the solution
Xof the initial problem. Let us write it symbolically as

IIIX-l(X)III-O (16)

where f is an operator (e.g. summation operator) such that l(X}) --+ f(X) as) - 00 ("con­
tinuity" property). Then the following proposition holds.
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Proposition 2.3
If the incremental procedure converges for the structure Gj and for the fractal structure

G, then the solution X of the fractal structure is obtained as the limit for j -+ 00 of the
solution ~ of the nonfractal structure Gj •

Proof According to the assumptions we shall have, by using the appropriate norm,
that IIIX-f(X)III-+o and 111~-f(X)III-+O.Then, due to the "continuity" of operator f,
we have that III!(X;) - f(X) III -+ 0 and, thus,

Illx-Xjlll = IIIX-!(X)+!(X)-f(X;)+f(X;)-xjlll ~ IIIx-!(X)III+III~

- f(X;) III + Illf(X) - f(X;) 111-+ 0 (17)

which implies the result.
The assumption of this proposition is a natural self-evident assumption. Indeed, if a

dynamic problem for a fractal structure has to be solved, the fractality of the geometry of
the body does not affect the validity of the time discretization method applied to the
structure under consideration.

On closing this section, we should notice that the propositions given lead to some
general conclusions useful for our calculation needs. We have kept the necessary math­
ematical tools to a minimum; a more deep mathematical study could give error estimates
and more precise and rigorous conclusions from the standpoint of mathematical analysis.

3. UNILATERAL PROBLEMS WITH CONVEX ENERGY

In the previous section we have considered general incremental bilateral problems. Let
us consider here a general unilateral problem which covers the case ofholonomic plasticity,
locking material laws etc., in structures subjected to general monotone, possibly multi­
valued boundary and/or interface conditions (Panagiotopoulos, 1985) (e.g. plastic hinges
in plates, unilateral contact and/or friction in solids). Let w be a convex strain energy
function such that w(£) takes values in ( - 00, + 00], w(£) ¥= 00, where £ = {£;k} i, k = I, 2, 3
is the strain tensor. Note that it is sufficient that Wbe only lower semicontinuous, and not
continuous, i.e. it is a superpotential in the sense of Moreau (Panagiotopoulos, 1985;
Moreau and Panagiotopoulos, 1989). We introduce the notation

W(u) = lL w(£(u)) dO if w(£(u)) is integrable,

00 otherwise

(18)

where u is the displacement vector and we assume that for every £ = {£;d there exists a
positive constant

w(£) ~ C8ik 8;k> C = constant> O. (19)

We again consider an incremental process and for this reason a dot is put on the
quantities. Within each increment we have to solve a general unilateral problem of the
following type, with respect to the displacements (i.e. in the sequel X and X* represent
displacement increments). Find X;E V such as to satisfy the variational inequality

Here <I>(Gj ,.) is a convex, lower semicontinuous superpotential from V into (- 00, + 00]

and <I> t= 00. W has the same properties. The variational inequality (eqn (20)) is a very
general variational inequality and covers all the cases of monotone possibly multivalued
material laws (e.g. holonomic plasticity with or without hardening, Hencky ideal plasticity
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without unloading, nonlinear elasticity etc.) combined with all monotone possibly multi­
valued boundary laws (e.g. friction laws, unilateral contact laws, plastic boundary zone
laws etc.). For the rigorous mathematical study of this variational inequality we refer to
Panagiotopoulos (1985), Moreau and Panagiotopoulos (1989) and Moreau et al. (1988).

The following proposition holds on the assumption that any rigid body displacement
is prevented (e.g. v = 0 on an appropriate boundary part of the body etc.) and that there
exists a constant cindependent of Gj such that

(21)

Note that this property always holds if Vis a subspace of the Sobolev space [H1(Q)P which
is the standard space for the rigorous study of the linear elasticity and of the variational
inequality [eqn (20)J.

Proposition 3.1
Suppose that wsatisfies eqn (19), where c depends on Gj for every j. Let there be a

constant a such that

c > a for every j

and let P(G) have the property in eqn (3). Moreover let us assume that

where c ~ 0 independently of Gj for every j; that

Iiminf <I>(Gj , X;) ~ <I>(G, X) for X; ~ X weakly in V;

liminf W(Gj , X;) ~ W(G, X) for Xj ~ X weakly in V;

W(Gi'X)~W(G,X) \fXEV and j~oo

and

Then X; ~ X weakly in Vas j -+ 00, where X is a solution of the variational inequality

(22)

(23)

(24)

(25)

(26)

(27)

W(G,X*)- W(G,X)+<I>(G,X*)-<I>(G,X) ~ (P(G),X*-X) VX*E V. (28)

Proposition 3.2
The solution is unique if Wand/or <I> are strictly convex.

Proof Suppose now that <I> and/or Ware strictly convex. Then the whole potential
energy,

I1(G(X» = W(G,X)+<I>(G,X)-(p(G,X», (29)

becomes minimum over V at the position of equilibrium X, as it results directly from the
variational inequality [eqn (28)] which is written as

I1(G, X) ::::; I1(G, X*) \f X* E V. (30)

Now I1(G, X) is strictly convex as a function of X. In order to show the uniqueness of the



Fractal geometry in structures. Numerical methods for convex energy problems 2217

solution let us assume that Xl and X 2 are both distinct solutions. From the strict convexity
of II we have that

II ( G, Xl; X
2

) < !II(G, XI) + 1II(G, X 2) = ! ( mJn II(X*) +~in II(X*») = mJn II(X*)

(31)

which is a contradiction because II(G, (XI + X 2)/2) gives a smaller value than the minimum
of II. Thus X I = X 2, i.e. the uniqueness of the solution results.

Proposition 3.3
If the structure is linear elastic with C = {C;klm} , the Hooke's tensor is such that

(32)

where c is a constant independent of Gj , then ~ > X strongly in V.
Note that eqn (32) holds if we are in the common functional framework of the Sobolev

spaces for an appropriate class of domains OJ' Obviously the strong convergence is also
guaranteed if e~ wee) contains a quadratic part and another part expressed through a
superpotential <1>1' Now we can prove some analogous results of proposition 2.1. We
consider the discretized form of the variational inequality [eqn (20)] [with respect to eqn
(28)], and we denote its solution by Xl (with respect to X h

).

Proposition 3.4
Suppose that all the assumptions of proposition 3.1 hold for both the continuous

variational inequality problem Gj and the discretized variational inequality problem GJ.
Moreover, let us assume that the solution ~h of the problem GJ tends strongly to the
solution Xj of the problem Gj as h~ 00, i.e.

Then

and

II Xl - ~ II ~ 0 as h ~ 00.

Xl ~ X weakly as h ~ 00 and j ~ 00

X h -+ X weakly as h ~ 00,

(33)

(34)

(35)

where X is the solution of the fractal variational inequality problem G and X h is the solution
of the corresponding discretized problem. If, moreover, ~ -+ X strongly in V, then the weak
convergence in eqns (34) and (35) is replaced by the strong convergence.

It results from the above propositions that, in order to solve a fractal unilateral problem
G, it is sufficient to solve a sequence of classical unilateral problems Gj by the F.E. method
or any other discretization procedure. At the limit j -+ 00 and h ~ 00, the solution of the
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Fractal problem G

L
i=1

(U.S.) or (F.I.)

~:-~....
~~Cal continuous problem Gj

(F.E.M.)

Discretized probl~ms Gr. Calculation
of the solution XI - XI as h -.00

I

L.No --------<

Fig. I. General flow chart of the fractal approximation algorithm.

fractal variational inequality is obtained. The numerical computer schemes to which all
these propositions lead are generally described in Fig. 1.

4. NUMERICAL APPLICATIONS: BILATERAL PROBLEM

As a first application we shall solve the tree-like regular cantilever beam of Fig. 2.
Tree-like structures may represent general networks, pipe line systems, natural trees
(Prusinkiewicz and Hanan, 1989), human arteries, diffusion-limited aggregation models
(Feder, 1988) etc. In our case, the tree-like structure represents a cell, especially a Purkinje
cell in the human brain (Muller and Reinhardt, 1990). We consider that this cell is sub­
jected to a uniform temperature change of 3°C. In Fig. 2 we give the displacement field
for such a structure. The thermal coefficient of expansion IX is taken to be 1.2 x 10- 5.

The method of calculation is described in Panagiotopoulos (l992b). The assumption we
make here is that the cell branches are beam elements with a modulus of elasticity E =
106 kNjm 2

, Poisson's ratio v = 0.10 and diameter d = 4 mm (the numerical data do not
correspond to the reality).

As a second application we consider a spongy body which is simulated by the Sierpinski
triangle of Fig. 3. This structure is assumed to be the attractor of a "just touching" I.F.S.
(Bamsley, 1988) which is described by the following three contraction mappings:

{x} = [0.50
WJ Y 0.0

, {x} = [0.50
"'2 Y 0.0

0.0 ] {x} {o.o }
0.50 y + 0.501 Ac

0.0 J{x} {0.0}
0.50 y + 0.0
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- - - - undefonned

--- defonned

, I,

''/' '
\ "I j.. ..

- .. ' I t',; .
" " \'- ..~': I

'/ ~', ,
I I

I

Fig. 2. Displacement field for a tree-like fractal structure.

{x} = [0.50
W3 Y 0.0

0.0 ] {x} + {0.50l AB
}.

0.50 y 0.0

The material we have is linear elastic with a modulus of elasticity E = 2.1 X 10 6 kN/m 2
,

Poisson's ratio v = 0.33 and thickness 0.15 m. The fractal dimension of the body is
D = In 3/ln 2. What we study here is the dynamic characteristics-mode shapes (eigenvectors)
and frequencies (eigenvalues) for the different approximations QI> Q2,'" of the fractal
body. All the approximations of the fractal structure have been discretized by triangular
constant stress (plane strain) elements. It is important to notice that the finite elements used

c

L.
A<o.o.o.O)

Fig. 3. A spongy body idealized through the Sierpinski triangle.
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5e+2

4e+2

if>
0.>
'8
<::
0.>
::>
cr 3e+20.>

~
--EI- First Approximation

~

~ 2e+2
-- Second Approximation

.::.:..... - Third Approximation0
i;j

'" -- Fourth Approximation"@
:> le+2

Oe+O +---.--....-....,...--r-~--r---r--r---.,..--,
o 2

Number of Resonant Frequencies

Fig. 4. Values of the first four frequencies for the approximations Q, to Q•.

here are of the same size for all iterations Q I> Q2'''' of the fractal body. The number of
the triangular finite elements which were used for the calculations are 12288,9216, 6912,
5184 for the first, second, third and fourth approximations, respectively. The dynamic
characteristics are computed by the normal mode analysis of the program MARC.

In Fig. 4 the first four frequencies for the approximations QI> Q2' Q3 and Q4 of the
fractal body are given. From the numerical results (Table 1), the accumulation of the results
after the second approximation towards the solution of the problem is evident.

5. NUMERICAL APPLICATIONS: UNILATERAL PROBLEM

In this section we shall study the unilateral contact problem with friction for fractal
interfaces. Therefore, we consider a structure with a fractal interface $. We assume that
Coulomb's friction conditions hold at the interface if debonding does not occur. A priori it
is not known where debonding occurs. In order to define the interface conditions of the
problem, we consider the normal and tangential components SN, ST {ST,} ofthe boundary
tractions S = {Si}'

The boundary conditions on the interface are described by the relations:

(36)

(37)
(38)

(i) if [UN] < 0 then SN ::= 0 and ST = 0,
(ii) if [UN] 0 then SN < 0,

if ISTI < JiISN\' then rUT] = {[uT,D = 0,
if ISTI JiISNI, then there exists A;;::: 0 such that rUT,] = -AST"
i= 1,2,3.

Here Ji is the frictional coefficient; [UN] is considered to be negative if it tends to open the
crack.

Table I.

Resonant frequencies
Iterations 2 3 4

I 78.655 138.633 229.827 419.913
2 67.324 122.133 165.894 218.ot3
3 64.001 117.885 153.709 203.193
4 65.019 119.624 156.009 206.849
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Concerning now the behavior of the body, we assume that it is a linear elastic body
obeying Hooke's law and that we have a geometrically linear theory. Let V be the linear
space of the displacements Vj, and let Vo be the set of the kinematically admissible dis­
placements, Le.

(39)

The work JaJ.vI dO of the force f = {J.} for the displacement v = {vd is denoted by (f, v)
and the bilinear form of elasticity by

a(u, v) = (Ce(u), e(v» = i Cijhkeij(u)ehk(v) dO. (40)

It has been shown by Panagiotopoulos (1975) and Necas et al. (1980) that the position
of equilibrium of the structure is obtained in the following way: let us consider first that
the tangential forces along the interface are given, i.e.

ST
j
= Ct~), i = 1,2,3, on the interface <1>. (41)

Then we have a simple unilateral contact problem whose solution u( 1) is the unique solution
of the minimum problem of the potential energy

where

ll(u(l» = min {ll(v)lvE VO, [VN] ~ 0 on <1>},

ll(v) = ~a(v, v) - (f, v) - f F,v; dr - i Ct~) [VT,] dr.
JrF If>

(42)

(43)

From u(l) we get the interface normal reactions at the interface SN, say ciP. Let us use the
notation SN = eli> to denote the normal traction to the interface <1>. Then, at the second
level we solve the friction problem with given interface normal reactions SN = C!-p. In this
problem we prefer to minimize the complementary energy ofthe structure in order to obtain
the stress field, because the resulting problem is a classical inequality constrained quadratic
programming (Q.P.) problem. We can formulate the same problem as a minimization
problem for the potential energy, but in this case a general convex nondifferentiable opti­
mization problem is formulated, since for the friction problem the potential energy contains
the friction energy form which is the absolute value function. Thus, in order to avoid the
use of the less efficient algorithms of nondifferentiable optimization, we prefer here to
minimize the complementary energy. Let us denote by 1:0 the statically admissible set

where ~ denotes the vector space of the stresses. The unique position of equilibrium (1'(2) is
obtained by the solution of the following minimum problem of the complementary energy.

(45)

From (1'(2) we obtain the corresponding displacements field U(2) and the interface tangential
forces ST = C1-7). This procedure is continued until the differences Ic¥,+ l) - C\~;>I and
I~j+ 1) - OJ; I become appropriately small.
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Note at this point that the minimization of the complementary energy requires the
formulation, for the chosen finite element scheme, of the force (or compatibility) method.
The singular value decomposition is applied for the automatic determination of a solution
of the equilibrium equations and for the formulation of the complementary energy
(Panagiotopoulos et al., 1992). First the minimum problems for the potential and the
complementary energy are formulated for the case of interface with nonfractal
geometry. However, in the case of fractured bodies, or metal surfaces subjected to sand­
blasting or to meteoritic rain, or interfaces in rock mechanics or biomechanics (bone
fracture etc.), fractal interfaces <I> must be taken into account.

Since <I> is the fixed point of a given transformation W, i.e.

we are led, in the case of fractal interfaces, to the following formulation of the unilateral
contact and friction problem. Let us consider for the pure unilateral contact subproblem,
the potential energy ITn , in the nth step, over the admissible set VOn' Here ITn is given by
eqn (43), where all the terms are now calculated with respect to the interface <I>n. Moreover,
Vodoes not change for each <I>n. With respect to <I>n, the complementary energy fi~, as well
as tOn for the pure friction subproblem, are formulated.

We denote the corresponding displacement and stress field by Un and (In respectively.
Since <I>n is an interface with classical geometry, the solutions Un and (In are obtained by
discretization and solution of the arising minimum problems. We repeat this procedure
several times by increasing n and we claim that at the limit n -+ 00, Un and (I" tend to the
solution of the fractal interface problem with contact and friction interface conditions. The
convergence of the whole procedure is still an open problem. However the numerical
experiments show a quick and stable convergence.

As an example we consider here the structure of Fig. 5 submitted to loading in its
plane. We have a linear elastic material with a modulus of elasticity E = 2.1 X 106 kNjm 2

and Poisson's ratio v 0.33. The thickness is taken as equal to 0.10 m. As is shown in
Fig. 5, we have two cracks with fractal geometry, which are defined to be the attractors of
the LF.S.s {R 2

; W h W2} and {R 2
; W3, W 4} where:

Wl {x} = [0.70 o.OOJ {x} + {O.OO}
y 0.02 0.80 y 0.00

W2 {~} = [ 0.30 o.OOJ {~} + {3.50}
J -0.06 0.30 y 1.70

lOt lOt lOt lOt lOt lOt lOt lOt lOt lOt lOt lOt

lOt _ ..........J_.L-..l.-...J.--l_.,.::....L..-L.....II.-..L-..L..-L.....II.-.,-­

lOt

lOt

lOt

lOt

lOt

lOt

lOt

lOt

lOt

lOt

lOt

lOot

lOt

lOt

lOot

lOt

lOt X

lOt

y~lOt

Fig. 5. A multifractured plane elastic structure.
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and

{x} = [0.5714
W3 Y 0.0543

{x} = [0.4286
W4 Y 0.1514

o.ooJ {x} + {O.OO}
0.80 y 0.70

O.OOJ {x} + {2.00}.
0.60 y 0.15

Based on the above I.F.S.s, the different structures corresponding to the consecutive
approximations of the fractal interfaces are calculated for the same kinematic conditions
and the same loading, and the stress and displacement fields are obtained for each approxi­
mation. The previously explained two-level algorithm was applied to analyze the frictional
contact problem in each structure on a HP755 workstation. Triangular constant stress
elements have been used for the discretization. In Fig. 6 the von-Mises stresses for the
approximations i2 to is are given. We observe that the stress field becomes stable near to

(a)

(b)

Von-Mises stress

[(J 2.0762E+02
[I] 2.5952E+02
W 3.1I43E+02
[[] 3.6333E+02

rnO.OooOE+00
[[]5.1905E+Ol
aJ1.0381E+02
m1.5571E+02

II] 4.1524E+02

[[] 4.6714E+02
[[] 5.1905E+02
[L] 5.7095E+02

[]] 6.2296E+02

Fig. 6. The von-Mises stress for the (a) second, (b) third, (c) fourth and (d) fifth iterations.

SAS 31:6-F
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(c)

(d)
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Fig. 6 (continued).

the interface of the fractal crack defined by the first I.F.S. {R 2
; WI' W2} from the third

approximation of the fractal interface. On the contrary, it is obvious that the same stress
field becomes stable near to the second crack defined by the I.F.S. {R 2

; W3, W 4} after the
fourth approximation of the fractal interface. This is due to the fact that this interface has
many external and re-entrant corners, which create singularities and make use of higher
order approximations necessary in order to have a convergence to the final solution of the
problem. Note that the irregularities of a fractal boundary increase when its fractal dimen­
sion is not near to its topological dimension. In the example we study here, the fractal
dimension of the I.F.S. {R 2

; WI. W2} is D = 1.10, whereas the same dimension of the I.F.S.
{R 2

; W3, W4} is D = 1.50.
Another factor which affects the quick convergence is the loading, which in this example

guarantees that the contact and noncontact regions do not change considerably in each
approximation. Let us also note here that the fractal boundary does not affect the stress
and displacement fields inside the body. Therefore, the St Venant principle for fractal
boundaries in problems having unilateral contact and friction effects seems to be valid.

6. NUMERICAL APPLICATIONS: UNILATERAL PROBLEMS WITH LARGE DISPLACEMENTS

In the treatment of the previous section, the theory was formulated under the assump­
tion that the arising displacements and the respective strains were small. Here we will extend
the developed approximation scheme for structures with fractal-type interfaces to the more
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Plot = BOn 31=403Ot

c D

~77777777171111777777111171777777177B

Rigid body

Fig. 7. A structure with a fractal boundary subjected to heavy load in its plane and a rigid
body AB.

general case by taking into account our formulation large displacements and large strains.
The method applied for the consideration of the geometric nonlinearities is the total
Lagrangian method (Bathe, 1982); thus all the quantities are referred to the initial con­
figuration of the body at time zero. Moreover, the second Piola-Kirchhoffstress tensor and
the Green-Lagrange strain tensor are used in the F.E. analysis.

In the following, a short description of the classical method for the solution of geo­
metrical nonlinear problems is given. The formulation we use is the total Lagrangian
formulation and Newton-Raphson iterations, modified for the solution ofunilateral contact
problems. Concerning the notation, the left superscripts refer to the considered con­
figuration of the body. Our aim is to express the virtual work in terms of an integral over
a known volume and a known surface, and to incrementally decompose the stress and
strains in an effective manner. The solution ofthe problem in the discretized form is obtained
through the following iterative scheme:

(46)

with

bKL linear strain incremental stiffness matrix,
bKNL nonlinear strain (geometric) incremental stiffness matrix,
tHIR vector of externally applied nodal point load at the time t+ I:1t,
b+Al}'{i-l) vector of nodal point forces equivalent to element stresses at the time t+l:1t in

the i-I iteration (internal forces).
I:1U vector of increments of the nodal point displacements in the i iteration.

(47)

Here, a left superscript indicates in which configuration the quantity occurs, while a left
subscript indicates the configuration with respect to that in which the quantity is measured.
In addition, if unilateral contact conditions hold for a part of the boundary, eqn (46) must
be written in the form
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Sigma~y:

o -4,OOOOE+04

[!] -3.4286E+04

~ -2.8571E+04

~ -2.2857E+04

~ -1.7143E+04

~ -1.I429E+04

~ -5_7143E+03

~ -4.8828E-04

~ 5,7143E+03

~ 1.1429E+04

~ 1.7143E+04

~ 2.2857E+04

o 2,857IE+04

o 3.4286E+04

~ 4.0000E+04
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A
Third Iteration

A
Fourth Iteration

Fifth Iteration

Sixth Iteration

Fig. 8, (J r stresses from the third to the sixth iteration.

where A and b(i) are appropriately defined matrix and vector introducing the inequality
constraints. The solution of every step of the proposed iterative scheme is obtained by
applying a simple Q.P. algorithm.

The above analysis was applied to the solution of a 2-D body, which is shown in Fig.
7, with a fractal boundary subjected to heavy load in its plane. Large loads on the upper
boundary enforce the fractal part to be in contact with the rigid support AB. The body has
been discretized by rectangular isoparametric elements. Linear elasticity and geometrical
nonlinearity are assumed. The modulus of elasticity is E = 2.1 X 106 kNjm 2 and the
Poisson's ratio, v = 0.33. The thickness is taken to be 0.05 m. We study the planification
of the fractal surface and the corresponding variations of the stress and displacement fields
(cf. Fig. 8).



5x} = [ 0.40
WI b -0.04

5x} = [0.60
W2 b 0.04
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The fractal boundary is defined to be the attractor of the I.F.S. {R 2
; W h W2} where

o.OOJ {x} + {O.OO}
0.60 y 0.00

o.OOJ {x} + { 1.00} .
0.80 y -0.10

We must note here that the above relations describe the I.F.S. on the assumption that the
coordinates of the point C are (x, y) = (0.0,0.0).

With this I.F.S. we calculate the approximations of the fractal interface, and for each
approximation the stress and displacement fields are obtained. From the results presented
in Fig. 8, we notice that the differences become insignificant after the fifth iteration. This is
due to the fact that the Hausdorff distance between the approximation is and the attractor
i is very small, i.e. the approximation is sufficiently approximates the attractor f. What we
must note here is that in the case of geometrically nonlinear structures, we need higher
order approximations than in the case ofgeometrically linear structures for the same fractal
boundary to have convergence.
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APPENDIX: CERTAIN PROOFS OF PROPOSITIONS OF SECTION 3

Proof ofProposition 3.1
From eqns (18) to (22) we obtain

This relation is now combined with eqn (23). Due to eqns (26) and (27), we can assume that W(Gj , X*) < 00 and
<Il(Gj , X*) < 00. We have that (c denotes the various constants)
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cllX;II' ,,;; cllXjl1 +c+ IIp(Gj) IIIIX*-X;II. (A2)

Then eqn (A2) implies with eqn (3) that II X; II < C 1 where C 1 is a constant. Thus, a subsequence of X can be
determined such that }

Now let us write eqn (20) in the form

Xj ---> X weakly in V. (A3)

(A4)

Taking the liminf from both sides in (A4) we obtain, using eqns (3) and (24)-(27) and observing that the liminf
of the r.h.s. is equal to the limit because this limit exists, that

<I>(G,X) + W(G,X)";; liminf (<I>(Gj,X;) + W(Gj,X;»";; W(G,X*)+<I>(G,X*)-(P(G),X*-X) VX*E V.
(AS)

Thus X is a solution of eqn (28).

ProofofProposition 3.3
In this case eqn (20) takes the form (panagiotopoulos, 1985): find X; E V so as to satisfy the variational

inequality

(A6)

Here

(A7)

Let us now put X* = X into eqn (A6). Then from eqns (32) and (A7) we obtain, using eqn (A6), the relation

cIIX-X;II',,;; (L(Gj)(X-X;), X-X;) = (L(Gj)X,X-Xj)-(L(G;}X;,X-X,)

,,;; (L(GJX,X-X;)+<I>(Gj,X) -<I>(Gj , XJ - (P(GJ, X -X;).

But the relation in eqn (24) implies that for X; ---> X weakly in V

limsup -<I>(Gj , X;) ,,;; -<I>(G, X).

Thus, from eqns (A9), (27) and (3), we have by taking the limsup of both sides of eqn (A8) that

limsup IIX-Xjll' ,,;; o.

(A8)

(A9)

(AW)

Here we have also used the fact that L(GJ = grad W(GJ. This relationship, together with eqn (26) implies, due
to the definition of gradient, that L(Gj)X ---> L(G)X strongly in V for every X E V.

Accordingly we have that II X-X; II ---> o.

ProofofProposition 3.4
Due to the assumptions of proposition 3.1 we have the convergence

(weak and strong convergence are identical since Vh is finite dimensional) and

X;---> X weakly in Vasj---> 00.

Thus for any linear functional I we may write that

I/(X-X;h) I = I/(X-X;)+/(X;-X])I ,,;; I/(X-X;)I+I/(X;-X])I.

The r.h.s. tends to zero because of eqns (AI2) and (33). Similarly

(All)

(AI2)

(Al3)

(AI4)

Thus the weak convergence is proved. In order to show the strong convergence we proceed as in eqns (14) and
(15).


